
A Distributed Efficient Clustering Approach for
Ad Hoc and Sensor Networks

Jason H. Li1, Miao Yu2, and Renato Levy1

1 Intelligent Automation, Inc., Rockville, MD 20855, USA�

{jli, rlevy}@i-a-i.com
2 Department of Mechanical Engineering, University of Maryland,

College Park, MD 20742, USA
mmyu@glue.umd.edu

Abstract. This paper presents a Distributed, Efficient Clustering Ap-
proach (DECA) for ad hoc and sensor networks. DECA can provide
robustness against moderate node mobility and at the same time render
energy-efficiency. The identified clusterheads cover the whole network
and each node in the network can determine its cluster and only one
cluster. The algorithm terminates in deterministic time without itera-
tions, and each node transmits only one message during the algorithm.
We prove analytically the correctness and complexity of the algorithm,
and simulation results demonstrate that DECA is energy-efficient and
resilient against node mobility.

1 Introduction

Communication between arbitrary endpoints in an ad hoc network typically re-
quires routing over multiple-hop wireless paths due to the limited wireless trans-
mission range. Without a fixed infrastructure, these paths consist of wireless
links whose endpoints are likely to be moving independently of one another.
Consequently, mobile end systems in an ad hoc network are expected to act
cooperatively to route traffic and adapt the network to the dynamic state of
its links and its mobility patterns. Unlike fixed infrastructure networks where
link failures are comparatively rare events, the rate of link failure due to node
mobility is the primary obstacle to routing in ad hoc networks [9].

A closely related area of ad hoc networks is wireless sensor networks (WSNs)
[1], which comprise of a higher number of nodes (in the thousands and more) scat-
tered over some region. Sensor nodes are typically less mobile, and more densely
deployed than mobile ad hoc networks (MANETs). The sensor nodes gather
data from the environment and can perform various kinds of activities—such as
collaborative processing of the sensor data, and performing some synchronized
actions based on the gathered sensor data. Sensor nodes are usually heavily
resource-constrained (especially on power), irreplaceable, and become unusable

� This work was supported by the Air Force Research Laboratory, grant FA8750-05-
C-0161.

X. Jia, J. Wu, and Y. He (Eds.): MSN 2005, LNCS 3794, pp. 937–949, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

938 J.H. Li, M. Yu, and R. Levy

after failure or energy depletion. It is thus crucial to devise novel energy-efficient
solutions for topology organization and routing that are scalable, efficient and
energy conserving in order to increase the overall network longevity.

Given the potentially large number of mobile devices, scalability becomes a
critical issue. To scale down networks with a large number of nodes, clustering
protocols have been investigated for ad hoc and sensor networks in the literature
[7][8][11]. While these strategies differ in the criteria used to organize the clusters,
clustering decisions in each of these schemes are based on static views of the
network topology; none of the proposed schemes, even equipped with some local
maintenance schemes, is satisfactorily resistant to node mobility beyond rare
and trivial node movement. One of the purposes of this work is to propose a
clustering protocol that is resilient against mild to moderate mobility where
each node can potentially move.

In the hybrid energy-efficient distributed clustering approach (HEED) pro-
posed for ad hoc sensor networks [12], clusterhead selection is primarily based
on the residual energy of each node. The clustering process entails a number
of rounds of iterations; each iteration exploiting some probabilistic methods for
nodes to elect to become a clusterhead. HEED is a fully distributed protocol
and it ensures that each node can either elect to become a clusterhead or it joins
a cluster within its range. While HEED is one of the most recognized energy-
efficient clustering protocols, we argue that its clustering performance can be
further enhanced. In this work, we will present a distributed, energy-efficient clus-
tering approach (DECA) that outperforms HEED in terms of energy-efficiency
and possesses the advantages of better clustering efficiency and resilience against
node mobility.

Our contributions are as follows. DECA aims to prolong network lifetime
by efficiently organizing nodes into clusters, with the clusters resistant to node
mobility. The protocol terminates without rounds of iterations as required by
HEED, which makes DECA a less complex and more efficient algorithm. Further,
DECA’s efforts of minimizing control overhead render even smaller overhead
than HEED, which implies better energy-efficiency in sensor networks.

The remainder of this paper is organized as follows. Section 2 describes the
network model and the clustering problem that we address in this work. Section
3 presents the DECA protocol with correctness and complexity analysis. Per-
formance evaluation is presented in Section 4, followed by the descriptions on
relevant work in Section 5. We conclude the paper in Section 6.

2 Problem Statement

An ad hoc wireless network is modeled as a set V of nodes that are intercon-
nected by a set E of full-duplex directed communication links. Each node has a
unique identifier and has at least one transmitter and one receiver. Two nodes
are neighbors and have a link between them if they are in the transmission range
of each other [5]. Neighboring nodes share the same wireless media, and each
message is transmitted by a local broadcast. Nodes within the ad hoc network

A DECA for Ad Hoc and Sensor Networks 939

may move at any time without notice, but we assume that the node speed is
moderate with respect to the packet transmission latency and wireless trans-
mission range of the network hardware in use. It is our goal that the clustering
protocol can still generate decent clusters under such mobility.

Let the clustering duration TC be the time interval taken by the clustering
protocol to cluster the network. Let the network operation interval TO be the
time needed to execute the intended tasks. In many applications, TO >> TC.
In general, nodes that travel rapidly in the network may degrade the cluster
quality because they alter the node distribution in their clusters and make the
clusters unstable, possibly long before the end of TO. However, research efforts
on clustering should not be restricted only within the arena of static or quasi-
stationary networks where node movements are rare and slow. Rather, for those
applications where TO is not much longer than TC, we propose in this work an
efficient protocol that generates clusters in ad hoc networks with mild to mod-
erate node mobility. One such example is related to fast and efficient command
and control in military applications, where nodes can frequently move.

In our model for sensor networks, though, the sensor nodes are assumed to
be quasi-stationary and all nodes have similar capabilities. Nodes are location
unaware and will be left unattended after deployment. Recharging is assumed
not possible and therefore, energy-efficient sensor network protocols are required
for energy conservation and prolonging network lifetime. For clustering, in par-
ticular, every node can act as both a source and a server (clusterhead). A node
may fail if its energy resource is depleted, which motivates the need for rotating
the clusterhead role in some fair manner among all neighboring nodes for load
balancing and overall network longevity.

The problem of clustering is then defined as follows. For an ad hoc or sensor
network with nodes set V , the goal is to identify a set of clusterheads that cover
the whole network. Each and every node v in set V must be mapped into exactly
one cluster, and each ordinary node in the cluster must be able to directly
communicate to its clusterhead. The clustering protocol must be completely
distributed meaning that each node independently makes its decisions based only
on local information. Further, the clustering must terminate fast and execute
efficiently in terms of processing complexity and message exchange. Finally, the
clustering algorithm must be resistant to moderate mobility (in ad hoc networks)
and at the same time renders energy-efficiency, especially for sensor networks.

3 DECA Clustering Algorithm

The DECA algorithm structure is somewhat similar to that presented by Lin
and Gerla [8] in that each node broadcasts its decision as the clusterhead in
the neighborhood based on some local information and score function. In [8]
the score is computed based on node identifiers, and each node holds its mes-
sage transmission until all its neighbors with better scores (lower ID) have done
so. Each node stops its execution of the protocol if it knows that every node
in its closed neighborhood (including itself) has transmitted. HEED [12] uti-

940 J.H. Li, M. Yu, and R. Levy

lizes node residual energy as the first criterion and takes a cost function as the
secondary criterion to compute the score, and each node probabilistically prop-
agates tentative or final clusterhead announcement depending on its probability
and connectivity. The execution of the protocol at each node will terminate when
the probability of self-election, which gets doubled in every iteration, reaches 1.

It is assumed in [8] that the network topology does not change during the algo-
rithm execution, and therefore it is valid for each node to wait until it overhears
every higher-score neighbor transmitting. With some node mobility, however,
this algorithm can halt since it is quite possible that an initial neighboring node
leaves the transmission range for a node, say v, so that v cannot overhear its
transmission. v then has to wait endlessly according to the stopping rule.

Similar assumption exists in HEED. Under node mobility, HEED will not halt
though, since each node will terminate according to its probability-doubling pro-
cedure. However, we observe that the rounds of iterations are not necessary and
can potentially harm the clustering performance due to the possibly excessive
number of transmitted announcements.

We emphasize the important insights on distributed clustering: those nodes
with better scores should announce themselves earlier than those with worse
scores. In this work, we utilize a score function that captures node residual
energy, connectivity and identifier. Each node does not need to hold its an-
nouncement until its better-scored neighbors have done so; each node does not
need to overhear every neighbor in order to stop; and, each node only transmits
one message, rather than going through rounds of iterations of probabilistic mes-
sage announcement. Given the fact that it is communication that consumes far
more energy in sensor nodes compared with sensing and computation, such saves
on message transmissions lead to better energy efficiency.

3.1 DECA Operation

Each node periodically transmits a Hello message to identify itself, and based
on such Hello messages, each node maintains a neighbor list. Define the score
function at each node as score = w1E + w2C + w3I , where E stands for node
residual energy, C stands for node connectivity, I stands for node identifier, and
weights follow

∑3
i=1 wi = 1. We put higher weight on node residual energy in

our simulations. The computed score is then used to compute the delay for this
node to announce itself as the clusterhead. The higher the score, the sooner the
node will transmit. The computed delay is normalized between 0 and a certain
upper bound Dmax, which is a key parameter that needs to be carefully selected
in practice, like the DIFS parameter in IEEE 802.11. In our simulation, we
choose Dmax = 10ms and the protocol works well. After the clustering starts,
the procedure will terminate after time Tstop, which is another key parameter
whose selection needs to take node computation capability and mobility into
consideration. In the simulation, we choose Tstop = 1s.

The distributed clustering algorithm at each node is illustrated in the pseudo
code fragments. Essentially, clustering is done periodically and at each clustering

A DECA for Ad Hoc and Sensor Networks 941

epoch, each node either immediately announces itself as a potential clusterhead
or it holds for some delay time.

I. Start-Clustering-Algorithm()
1 myScore = w1E + w2C + w3I;
2 delay = (1000 − myScore)/100;
3 if (delay < 0)
4 then broadcastCluster (myId, myCid, myScore);
5 else
6 delayAnnouncement ();
7 Schedule clustering termination.

II. Receiving-Clustering-message(id, cid, score)
1 if (id == cid)
2 then if (myCid == UNKNOWN)
3 then if (score > myScore)
4 then myCid = cid;
5 cancelDelayAnnouncement ();
6 broadcastCluster (myId, myCid,score);
7 elseif (score > myScore)
8 then if (myId == myCid)
9 then needConversion = true;

10 else
11 convertToNewCluster ();

III. Finalize-Clustering-Algorithm()
1 if (needConversion)
2 then if (!amIHeadforAnyOtherNode ())
3 then convertToNewCluster ();
4 if (myCid == UNKNOWN)
5 then myCid = cid;
6 broadcastCluster (myId, myCid, score);

On receiving such clustering messages, a node needs to check whether the
node ID and cluster ID embedded in the received message are the same; same
node ID and cluster ID means that the message has been transmitted from a
clusterhead. Further, if the receiving node does not belong to any cluster, and
the received score is better than its own score, the node can simply join the
advertised cluster and cancel its delayed announcement.

If the receiving node currently belongs to some other cluster, and the received
score is better than its own score, two cases are considered. First, if the current
node belongs to a cluster with itself as the head, receiving a better scored message
means that this node may need to switch to the better cluster. However, cautions
need to be taken here before switching since the current node, as a clusterhead,
may already have other nodes affiliated with it. Therefore, inconsistencies can

942 J.H. Li, M. Yu, and R. Levy

occur if it rushes to switch to another cluster. In our approach, we simply mark
the necessity for switching (line 9 in Phase II) and defer it to finalizing phase,
where it checks to make sure that no other nodes are affiliated with this node
in the cluster as the head, before the switching can occur. But if the current
node receiving a better-scored message is not itself a clusterhead, as an ordinary
node, it can immediately convert to the new cluster, and this is the second case
(line 11 in Phase II). It is critical to note that the switch process mandates that
a node needs to leave a cluster first before joining a new cluster. In the finalizing
phase, where each node is forced to enter after Tstop, each node checks to see if
it needs to convert. Further, each node checks if it already belongs to a cluster
and will initiate a new cluster with itself as the head if not so.

3.2 Correctness and Complexity

The protocol described above is completely distributed, and to prove the cor-
rectness of the algorithm, we need to show that 1) the algorithm terminates; 2)
every node eventually determines its cluster; and 3) in a cluster, any two nodes
are at most two-hops away.

Theorem 1. Eventually DECA terminates.

Proof. After the clustering starts, the procedure will stop receiving messages
after time Tstop, and enter the finalizing phase, after which the algorithm will
terminate. ��
Note that in order for DECA to outperform related protocols presented in [8]
and [12] under node mobility, it is critical to design the key parameters Dmax and
Tstop appropriately taking node computation and mobility patterns into consid-
erations. With carefully designed parameters, node needs not to wait (possibly in
vain as in [8]) to transmit or terminate, nor need it to go through rounds of prob-
abilistic announcement. In HEED, every iteration takes time tc, which should
be long enough to receive messages from any neighbor within the transmission
range. We can choose Dmax to be roughly comparable to (probably slightly larger
than) tc and DECA can generally terminate faster than HEED.

Theorem 2. At the end of Phase III, every node can determine its cluster and
only one cluster.

Proof. Suppose a node does not determine its cluster when entering Phase III.
Then condition at line 4 holds and the node will create a new cluster and claims
itself as the clusterhead. So every node can determine its cluster. Now we show
that every node selects only one cluster. A node determines its cluster by one
of the following three methods. First, it claims itself as the clusterhead; second,
it joins a cluster with a better score when its cluster is undecided; and third, it
converts from a cluster to another one. The first two methods do not make a node
join more than one clusters, and the switch procedure checks for consistency and
mandates that a non-responsible node (a node not serving as head for a cluster)
can only leave the previous cluster first before joining the new cluster. As a
result, no node can appear in two clusters. ��

A DECA for Ad Hoc and Sensor Networks 943

One may argue that Theorem 2 does not suffice for clustering purposes. For
example, one can easily invent an algorithm such that every node creates a
new cluster and claims itself as the clusterhead; obviously Theorem 2 holds.
However, our algorithm does much better than such trivial clustering. Most of
the clusters are formed executing line 4 to line 6 in Phase II, which means joining
clusters with better-scored heads. This is due to the fact that the initial order
of clusterhead announcements is strictly determined using the score function.

Theorem 3. When clustering finishes, any two nodes in a cluster are at most
two-hops away.

Proof. The proof is based on the mechanisms by which a node joins a cluster. A
node, say v, joins a cluster with head w only if v can receive an announcement
from w with a better score. In other words, all ordinary nodes are within one-hop
from the clusterhead and the theorem follows. ��

To show that the algorithm is energy-efficient, we prove that the communica-
tion and time complexity is low.

Theorem 4. In DECA, each node transmits only one message during the op-
eration.

Proof. In broadcastCluster method, a Boolean variable iAlreadySent (not shown
in Pseudo code) ensures that each node cannot send more than once. Now we
show that each node will eventually transmit. In Phase I execution when nodes
start the clustering, each node either transmits immediately or schedules a de-
layed transmission, which will either get executed or cancelled at line 5 in Phase
II. Note that the cancellation is immediately followed by a transmission so each
node will eventually transmit. ��

Theorem 5. The time complexity of the algorithm is O(|V |).

Proof. From Phase II operations, each received message is processed by a fixed
number of computation steps without any loop. By Theorem 4, each node only
sends one message and therefore there are only |V | messages in the system. Thus
the time complexity is O(|V |). ��

4 Performance Evaluation

We evaluate the DECA protocol using an in-house simulation tool called agent-
based ad-hoc network simulator (NetSim). In our simulations, random graphs are
generated so that nodes are randomly dispersed in a 1000m × 1000m region and
each node’s transmission range is bound to 250m. We investigate the clustering
performance under different node mobility patterns, and the node speed ranges
from 0 to 50m/s. For each speed, each node takes the same maximum speed and
a large number of random graphs get generated. Simulations are run and results
are averaged over these random graphs.

944 J.H. Li, M. Yu, and R. Levy

1 2 3 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
static scenario

ra
tio

 o
f c

lus
te

rs
 a

nd
 si

ng
le−

no
de

 cl
us

te
rs

total # of clusters
single−node clusters

Lin&Gerla
DECA

HEED

Krishna

Fig. 1. Ratio of number of clusters. Static scenario.

1 2 3 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
maximum speed 0.1m/s

ra
tio

 o
f c

lus
te

rs
 a

nd
 si

ng
le−

no
de

 cl
us

te
rs

total # of clusters
single−node clusters

Lin&Gerla DECA

HEED

Krishna

Fig. 2. Ratio of number of clusters. Maximum speed 0.1m/s.

In general, for any clustering protocol, it is undesirable to create single-node
clusters. Single-node clusters arise when a node is forced to represent itself (be-
cause of not receiving any clusterhead messages). While many other protocols
generate lots of single-node clusters as node mobility gets more aggressive, our
algorithm shows much better resilience. We have considered the following met-
rics for performance comparisons: 1) the average overhead (in number of protocol
messages); 2) the ratio of the number of clusters to the number of nodes in the
network; 3) the ratio of the single-node clusters to the number of nodes in the
network; and 4) the average residual energy of the selected clusterheads.

We first look at static scenarios where nodes do not move and the quasi-
stationary scenarios where the maximum node speed is bounded at 0.1m/s.
We choose [8] proposed by Lin & Gerla (LIN) as a representative for those
general clustering protocols, and choose Krishna’s algorithm (KRISHNA) [7] to
represent dominating-set based clustering protocols. For energy-aware protocols,
we choose HEED [12] to compare with DECA. From Fig. 1 (static scenario) and
Fig. 2 (0.1m/s max. speed) it is easy to observe that KRISHNA has the worst
clustering performance with the highest cluster-to-nodes ratio, while DECA and
LIN possess the best performance. HEED performs in between.

Fig. 3, which combines Fig. 1 and Fig. 2, shows that all four protocols perform
consistently under (very) mild node mobility. In fact, with maximum node speed
set as 0.1m/s, both LIN and DECA perform exactly the same as their static
scenarios, while HEED and KRISHNA degrade only to a noticeable extent.

A DECA for Ad Hoc and Sensor Networks 945

1 2 3 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
static scenario and maximum speed 0.1m/s

ra
tio

 o
f c

lus
te

rs
 a

nd
 si

ng
le−

no
de

 cl
us

te
rs

total # of clusters
single−node clusters
total # of clusters(0.1ms)
single−node clusters(0.1ms)

Lin&Gerla
DECA

HEED

Krishna

Fig. 3. Ratio of number of clusters. Put together.

0 5 10 15 20 25 30 35 40 45 50
0

0.5

1

1.5

2

2.5

node maximum speed (m/s)

ave
rag

e #
 of

 m
ess

ag
e t

ran
sm

iss
on

s p
er

no
de

DECA
HEED
DECA/HEED

Fig. 4. Average number of transmissions per node and DECA/HEED ratio

During our simulations, as we increase the maximum node speed, both LIN
and KRISHNA fail to generate clusters. This is expected. In LIN, a node will
not transmit its message until all its better-scored neighbors have done so; the
algorithm will not terminate if a node do not receive a message from each of its
neighbors. Node mobility can make the holding node wait for ever. In KRISHNA,
in order to compute clusters, each node needs accurate information of the entire
network topology, facilitated by network-wide link state update which by itself
is extremely vulnerable to node mobility. In contrast, we found that both HEED
and DECA are quite resilient to node mobility in that they can generate decent
clusters even when each node can potentially move independently of others. The
following figures compare the performance of DECA and HEED under different
node mobility.

Fig. 4 shows that for DECA, the number of protocol messages for clustering
remains one per node, regardless of node speed, as proven in Theorem 4. For
HEED, the number of protocol messages is roughly 1.8 for every node speed,
and a node running DECA transmits about 56% number of messages as that
in HEED (shown as DECA/HEED in Fig. 4). The fact that HEED incurs more
message transmissions is due to the possibly many rounds of iterations (espe-
cially when node power is getting reduced), where each node in every iteration
can potentially send a message to claim itself as the candidate clusterhead [12].
Reducing the number of transmissions is of great importance, especially in sensor
networks, since it would render better energy efficiency and fewer packet colli-

946 J.H. Li, M. Yu, and R. Levy

0 10 20 30 40 50
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

node maximum speed (m/s)

ra
tio

 o
f c

lu
st

er
s

DECA
HEED

Fig. 5. Ratio of clusters to total number of nodes in network

0 5 10 15 20 25 30 35 40 45 50
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

node maximum speed (m/s)

ra
tio

 o
f s

ing
le−

no
de

 cl
us

te
rs

DECA
HEED

Fig. 6. Ratio of single-node clusters to total number of nodes in network

sions (e.g. CSMA/CA type MAC in IEEE 802.11). Fig. 5 and Fig. 6 illustrate
the ratio of number of clusters and single node clusters to the total number of
nodes in network. In both cases, DECA outperforms HEED.

Note that both DECA and HEED perform quite consistently under differ-
ent maximum node speed and this is not coincident: a node in both DECA
and HEED will stop trying to claiming itself as the potential clusterhead after
some initial period (delayed announcement in DECA and rounds of iterations in
HEED) and enters the finalizing phase. As a result, the local information gath-
ered, which serves as the base for clustering, is essentially what can be gathered

0 5 10 15 20 25 30 35 40 45 50
10

20

30

40

50

60

70

node maximum speed (m/s)

av
er

ag
e

clu
ste

rh
ea

d
en

ge
rg

y

DECA
HEED

Fig. 7. Average clusterhead energy

A DECA for Ad Hoc and Sensor Networks 947

within the somewhat invariant initial period which leads to consistent behaviors
under different node mobility.

Further, we compare DECA and HEED with respect to the (normalized)
average clusterhead energy in Fig. 7. Again both DECA and HEED perform
quite consistently and DECA outperforms HEED with about twice the average
clusterhead residual energy. This is in accordance with Fig. 5 where DECA
consistently incurs fewer message transmissions than HEED. In sensor networks,
sending fewer messages by each node in DECA while achieving the intended goal
usually means energy-efficiency and longer node lifetime.

In addition, HEED may possess another undesirable feature in its protocol
operation. Over time, each node’s energy fades leading to a smaller probability of
transmission in HEED for each node, which implies more rounds of iterations. As
a result, more announcements could be sent and more energy could be consumed,
which could lead to more messages sent and more energy consumed in the next
round of clustering! In future work we will analyze HEED and execute more
extensive simulations to see if such amplifying-effects really exist. DECA, on the
contrary, does not posses this potential drawback even with energy fading, since
each node only sends one message during the operation.

5 Related Work

Das and Sivakumar et al. [10] identified a subnetwork that forms a minimum
connected dominating set (MCDS). Each node in the subnetwork is called a
spine node and keeps a routing table that captures the topological structure of
the whole network. The main drawback of this algorithm is that it still needs a
non-constant number of rounds to determine a connected dominating set [11].

In [11] the authors proposed an efficient localized algorithms that can quickly
build a backbone directly in ad hoc networks. This approach uses a localized
algorithm called the marking process where hosts interact with others in re-
stricted vicinity. This algorithm is simple, which greatly eases its implementa-
tion, with low communication and computation cost; but it tends to create small
clusters.

Similar to [8], Basagni [3] proposed to use nodes’ weights instead of lowest ID
or node degrees in clusterhead decisions. Weight is defined by mobility related
parameters, such as speed. Basagni [4] further generalized the scheme by allowing
each clusterhead to have at most k neighboring clusterhead and described an
algorithm for finding a maximal weighted independent set in wireless networks.

One of the first protocols that use clustering for network longevity is the
Low-Energy Adaptive Clustering Hierarchy (LEACH) protocol [6]. In LEACH,
a node elects to become a clusterhead randomly according to a target number
of clusterheads in the network and its own residual energy, and energy load gets
evenly distributed among the sensors in the network. In addition, when possible,
data are compressed at the clusterhead to reduce the number of transmissions.
A limitation of this scheme is that it requires all current clusterheads to be able
to transmit directly to the sink.

948 J.H. Li, M. Yu, and R. Levy

6 Conclusion and Future Work

In this paper we present a distributed, efficient clustering algorithm that works
with resilience to node mobility and at the same time renders energy efficiency.
The algorithm terminates fast, has low time complexity and generates non-
overlapping clusters with good clustering performance. Our approach is appli-
cable to both mobile ad hoc networks and energy-constrained sensor networks.
The clustering scheme provides a useful service that can be leveraged by different
applications to achieve scalability.

It can be observed that in DECA the dispersed delay timers for clusterhead
announcement assume the existence of a global synchronization system. While
this might not be a problem for many (military) ad hoc network applications,
for sensor networks synchronization can become trickier. It could be an interest-
ing research to study time synchronization protocols combined with clustering
protocol in sensor networks, with an effort to provide the maximum degree of
functionality and flexibility with minimum energy consumption. Further, it could
be interesting to observe how much improvement DECA can still maintain over
HEED as transmission range varies.

References

1. I. F. Akyildiz, W. Su, Y. Sanakarasubramaniam, and E. Cayirci, ”Wireless sensor
networks: A survey,” Computer Networks, vol. 38, no. 4, pp. 393-422, March 2002.

2. D. J. Baker, A. Ephremides, and J. A. Flynn, ”The design and simulation of a
mobile radio network with distributed control,” IEEE Journal on Selected Areas
in Communications, vol. SAC-2, no. 1, pp. 226-237, January 1984.

3. S. Basagni, ”Distributed clustering for ad hoc networks,” in Proceedings of the 1999
International Symposium on Parallel Architectures, Algorithms, and Networks (I-
SPAN’99)

4. S. Basagni, D. Turgut, and S. K. Das, ”Mobility-adaptive protocols for managing
large ad hoc networks,” in Proc of the IEEE International Conference on Commu-
nications, ICC 2001, June 11-14 2001, pp. 1539-1543.

5. B. N. Clark, C. J. Colburn, and D. S. Johnson, ”Unit disk graphs,” Discrete Math-
ematics, vol. 86, pp. 165-167, 1990.

6. W. R. Heinzelman, A. Chandrakasan, and H. Balakrishnan, ”Energy efficient com-
munication protocol for wireless microsensor networks,” in Proceedings of the3rd
Annual Hawaii International Conference on System Sciences, HICSS 2000,January
4-7 2000, pp. 3005-3014

7. P. Krishna, N.N. Vaidya, M. Chatterjee and D.K. Pradhan, A cluster-based ap-
proach for routing indynamic networks, ACM SIGCOMM Computer Communica-
tion Review 49 (1997) 49-64.

8. C. R. Lin and M. Gerla, ”Adaptive clustering for mobile wireless networks,” Journal
on Selected Areas in Communications, vol. 15, no. 7, pp. 1265-1275, September
1997.

9. A. B. McDonald and T. Znati, ”A mobility-based framework for adaptive clustering
in wireless ad hoc networks,” IEEE Journal on Selected Areas in Communications,
vol. 17, no. 8, pp. 1466-1487, August 1999.

A DECA for Ad Hoc and Sensor Networks 949

10. R. Sivakumar, B. Das, and B. V., ”Spine-based routing in ad hoc networks,”
ACM/Baltzer Cluster Computing Journal, vol. 1, pp. 237-248, November 1998,
special Issue on Mobile Computing.

11. J. Wu and H. Li, ”On calculating connected dominating sets for efficient routing
in ad hoc wireless networks,” Telecommunication Systems, Special Issue on Mobile
Computing and Wireless Networks, vol. 18,no. 1/3, pp. 13-36, September 2001.

12. O. Younis, S. Fahmy, ”HEED: A Hybrid, Energy-Efficient,Distributed Clustering
Approach for Ad Hoc Sensor Networks”, IEEE TRANSACTIONS ON MOBILE
COMPUTING, VOL. 3, NO. 4, OCTOBER-DECEMBER 2004

	Introduction
	Problem Statement
	DECA Clustering Algorithm
	DECA Operation
	Correctness and Complexity

	Performance Evaluation
	Related Work
	Conclusion and Future Work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

